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Abstract

Surface and subsurface responses during frictionless indentation of elasto-plastic solids are investigated. Cases of mono-
tonic and repeated loading are considered. It is shown that the role of plasticity parameters on indentation behavior cannot
be well described in terms of surface response alone. It must be tied with subsurface response. In particular, the difference
between the materials exhibiting isotropic hardening and that exhibiting kinematic hardening is less apparent when the
force-displacement response and the deformed surface from the two are compared. Yet, it is quite apparent when subsur-
face response such as plastic strain, residual stress and plastic zone dimension are compared. An attempt has been made to
characterize such surface and subsurface responses, for different plastic behavior, and to compare them with estimations
obtained from analytical solutions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many situations involving elasto-plastic contact behavior exist in manufacturing, fabrication, and packag-
ing processes, as well as in structural and mechanical systems. Elasto-plastic contact behavior also plays a key
role in damage modes involving wear and friction often occurring in the above processes and systems. How-
ever, in the examples above the contact loading is seldom described by quantities derived from elasto-plastic
contact behavior. Rather, contact loading and the material response at the surface are treated empirically in
terms of hardness or indentation strain. The latter may represent the averaged material behavior but may not
capture the important mechanisms responsible for material failures.

Although a number of studies have been dedicated to analyzing elasto-plastic indentation, the quantifica-
tion of some representative surface and subsurface responses is not an easy task. In the early 1950s, based on
the work of Meyer (1908) and Tabor (1951) substantiated quantities like hardness and indentation
strain. These are surface responses that are believed to represent the material response involving elasto-plastic
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indentation. Tabor�s study and more recent studies (Park and Pharr, 2004; Mesarovic and Fleck, 1999; Yu and
Blanchard, 1996) also imply that plastic and hardening behavior may not be well captured simply by surface
response like a single-valued hardness, instead by hardness-indentation strain relations. Such relations ob-
tained from spherical indentation have been shown to capture differences caused by different plastic and hard-
ening behavior (Tabor, 1951; Tirupataiah and Sundararajan, 1991). This has been the basis for a method to
infer the stress–strain relation of metallic materials (Tabor, 1951; Tirupataiah and Sundararajan, 1991, 1987,
1994). However, such a method is subject to some criticisms mainly due to the inaccuracy of the measured
contact radius, and it has not been applied for a wide variety of elasto-plastic materials. Nevertheless, it is
important to understand thoroughly the relation between hardness and indentation strain for materials with
different hardening and plastic behavior. One way to do this is using the finite element simulation where the
contact radius developing during indentation can be monitored accurately.

Since many technologically important materials including steels, cemented carbide, aluminum, copper,
nickel, and their alloys exhibit different hardening behavior it appears necessary to study indentation re-
sponses as affected by hardening. This means that phenomena exhibited by the kinematic hardening such
as Bauschinger effect and ratchetting, in addition to the classical isotropic hardening behavior, need to be
investigated. Furthermore, to capture the complex effect of kinematic hardening, the investigation must be ex-
tended to the case of cyclic indentation loading. Indentation responses to be analyzed also need to be broad-
ened to include, not only the surface response such as hardness-indentation strain, but also the subsurface
response such as distributions and development of plastic strains, stresses, and plastic zone. While many inves-
tigations have been done to study the surface response by indentation (Tabor, 1951; Park and Pharr, 2004;
Tirupataiah and Sundararajan, 1991, 1987, 1994; Jayaraman et al., 1998; Bhattacharya and Nix, 1988), very
little is known about the subsurface response. This is not surprising because the indentation experiment mea-
sures only the surface response in terms of the load–displacement curve and the deformed surface profile.
Some studies on the subsurface response have shed some light on the stress and strain distributions as well
as on the size or shape of plastic zone (Hardy et al., 1971; Kral et al., 1993; Samuels and Mulhearn, 1956;
Koeppel and Subhash, 1999). Since correlations between the surface and subsurface responses are still lacking,
our intent here is to elaborate on such correlations and to see whether some important links can be made.

Capturing and modeling different hardening behavior at the continuum level remains a non-exhausted
subject of research. Models have been developed to incorporate cyclic plasticity behavior which, according
to Suresh (1998) should include the Bauschinger effect, elastic shakedown, cyclic hardening or softening, ratch-
etting, and mean stress relaxation (Armstrong and Frederick, 1966; White et al., 1990; Bower, 1989; Jiang and
Sehitoglu, 1996,a,b; Mizuno et al., 2000; Ohno and Abdel-Karim, 2000; Ekh et al., 2000). Some of these
models are very versatile and capture the aforementioned behavior. Many have been extended from a known
kinematic hardening model by Armstrong and Frederick (1966). Evaluation of different hardening models
is beyond the scope of this paper. Here, we limit our effort to elasto-plastic indentation simulations using a
J2-flow plasticity model with combined isotropic–kinematic hardening that enable us to capture Bauschinger
effect, ratchetting and shakedown. Such a model has been presented and used by, among others, White et al.
(1990), Ekh et al. (2000), and Pedersen (2000) for problems other than indentation. It appears to be satisfac-
tory and capable of capturing the important aspects of cyclic hardening behavior.

It is worth mentioning that while there have been studies using the isotropic hardening plasticity
(Bhattacharya and Nix, 1988; Kral et al., 1993), applications of cyclic hardening plasticity, and in particular
using the combined isotropic–kinematic hardening to elasto-plastic contact problems are still rare. Investiga-
tions on how the isotropic and kinematic hardening models affect the spherical indentation behavior have been
done by Huber and Tsakmakis (1998, 1999a,b) who emphasized more on extracting material properties but
included some analysis on surface and subsurface responses.

This paper aims at studying the normal frictionless indentation behavior of homogeneous metallic
substrates as influenced by their elasto-plastic parameters, and by no means covers all aspects related to con-
stitutive modeling of materials and elasto-plastic indentation behavior. It focuses on studying some character-
istic surface response due to spherical indentation, such as the variation of mean pressure (Meyer hardness)
with indentation strain, and its relation to the subsurface response including the plastic zone dimension,
plastic strain and residual stress. This is done primarily for the case of monotonic loading, where the role
of plasticity parameters of different hardening behavior can be generalized and examined. Then, an analysis
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is performed for two cases of cyclic loading, where different hardening behavior (and their corresponding plas-
ticity parameters) are examined in terms of load–displacement curve and subsurface stress and strain. Studies
of this kind appear to be new since previous work focuses mainly on indentation behavior with isotropic hard-
ening plasticity (Mesarovic and Fleck, 1999; Bhattacharya and Nix, 1988; Hardy et al., 1971; Kral et al., 1993)
or on extracting isotropic and kinematic hardening properties using the indentation method (Huber and
Tsakmakis, 1999a,b; Bucaille et al., 2003; Dao et al., 2001). Studies by Huber and Tsakmakis (1998,
1999b) are among those that emphasize the importance of the effect of the combined hardening behavior.
It is believed that through this paper a novel implementation of the combined isotropic–kinematic hardening
plasticity will allow to further study numerically the roles of plastic parameters and hardening on indentation
behavior. The model, as has been applied to the experimental data in Appendix A, can deal with different phe-
nomena, such as Bauschinger effect and ratchetting whose influences are obvious in deformation modes other
than the indentation test, e.g. tensile or bending test.
2. Constitutive law and model

2.1. Combined isotropic–kinematic hardening plasticity

We consider here a J2-flow plastic constitutive law described in the rate form as:
D ¼ De þDp ð1Þ
where D denotes the symmetric part of the of velocity gradient. The relation above was obtained from the
multiplicative plasticity theory where the multiplicative decomposition of the deformation gradient into elastic
and plastic parts (Belytschko et al., 2001) holds, F = Fe Æ Fp. Accordingly, the spatial velocity gradient is
written,
L ¼ _F � F�1 ¼ _F
e � ðFeÞ�1 þ Fe � _Fp � ðFpÞ�1 � ðFeÞ�1 ¼ Le þ Fe � Lp � ðFeÞ�1 ð2Þ
Notice that in the case of metallic materials where the elastic deformation is small compared to the plastic
deformation, (2) simplifies to
L � Le þ Lp ð3Þ

Furthermore, the velocity gradient tensor can be decomposed into symmetric (D) and antisymmetric parts
(W),
L ¼ ot
ox

� �T

¼ DþW ð4Þ
Considering the symmetric part of this equation one can recover (1).
We follow the approach outlined in Weber (1988) and Weber et al. (1988), which was also described by

White (1988) and White et al. (1990), to extend the small deformation version of a constitutive law to its large
deformation version. In such an approach, the tangent moduli relates an objective rate called Jaumann rate �ðÞ
is used, of a stress tensor with the deformation,
�s ¼ C e : ðD�DpÞ; �s ¼ _s�W .s� s.WT ð5Þ

The stress tensor is chosen to be Kirchoff stress because it leads to symmetric tangent moduli (Belytschko
et al., 2001),
s ¼ Jr; J ¼ detF ð6Þ

The elastic behavior is isotropic with moduli expressed as
C e ¼ ðj� 2l=3ÞI� I� 2lI

Cijkl ¼ ðj� 2l=3Þdijdkl þ lðdikdjl þ dildjkÞ ð7Þ
where I and I are the second and fourth rank unit tensors.
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In the model described here, the associated plastic-flow rule without volumetric plastic strain is considered.
That is, the direction of plastic flow coincides with the growth of yield surface,
Dp ¼ _kr; r ¼ 3

2�r
Rdev;

Rdev ¼ sdev � ð1� bÞa; �r ¼ 3

2
Rdev : Rdev

� �1
2

ð8Þ
As seen, the plastic flow includes an effective stress tensor Rdev that contains the back stress tensor a describing
the effect of kinematic hardening, and an adjustable parameter (1 � b) describing the relative contribution of
kinematic hardening in the overall behavior. Such an adjustable parameter has not been considered in other
studies (White et al., 1990; Ekh et al., 2000; Pedersen, 2000) mentioned in the beginning. Then, the yield con-
dition von Mises-type plasticity is expressed as
f ¼ �r� ryð��Þ ð9Þ
where last term contains the initial yield stress (r0) and the isotopic hardening law. Thus, the plasticity model
incorporates both kinematic and isotropic behavior. Their relative contribution is controlled by adjusting the
parameter b. The kinematic hardening part is described by a generalized version of Armstrong–Frederick
kinematic hardening rule (Kobayashi and Ohno, 2002):
a ¼
XM
i¼1

aðiÞ ð10Þ

�aðiÞ ¼ lðiÞDp � nðiÞ _kaðiÞ ð11Þ
while the isotropic hardening part is described by a model proposed by Kocks (1976),
ryð��Þ ¼ r0 þ bQð1� e�c��Þ ð12Þ
where �� is the equivalent plastic strain defined as
R t
0
_k dt.

The above equations together with the consistency condition _k P 0, f 6 0, _kf ¼ 0, can be used to obtain the
plastic parameter _k and the elasto-plastic tangent moduli relating �s ¼ C ep : D,
_k ¼ C e : DPM
i¼1

3
2
lðiÞ � nðiÞr : a

� �
þ dry=d��þ r : C e : r

ð13Þ

C ep ¼ C e � C e : r� r : C ePM
i¼1ð32lðiÞ � nðiÞr : aÞ þ dry=d��þ r : C e : r

ð14Þ
The above model has been implemented in a general purpose code ABAQUS through the user subroutine
UMAT (HKS, 2002). In it, ABAQUS uses the Hughes–Winget incremental algorithm (Hughes and Winget,
1980) to handle the large deformation plasticity problem. More detailed explanations about the numerical
implementation of the plasticity model are given in Appendix B.

2.2. Numerical model

In the following sections, the problem to be investigated is the indentation of elasto-plastic half space by a
rigid spherical indenter of radius R (Fig. 1). In the contact region, the interaction between surfaces is consid-
ered to be frictionless. Two cases are considered, the first case refers to the monotonic loading, and the second
one to cyclic loading. The first case is simply the first half cycle of the indentation curve while the second one
involves loading–unloading for several cycles under constant or increasing maximum load in each cycle. Roles
of yield stress and hardening parameters are studied in terms of the relation between Meyer hardness, which is
defined as the normal indentation load divided by the projected contact area, H = P/pa2, and indentation
strain, a/R.
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Fig. 1. Schematic of elasto-plastic indentation by a rigid sphere.
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The elasto-plastic boundary value problem was solved using the finite element (FE) code ABAQUS. The
FE model consists of a an axisymmetric mesh for the substrate which was made of 4-node linear elements,
and a spherical rigid surface for the indenter. Only one half of the whole geometry is necessary. The sizes
of the outer mesh boundaries were about 1000 times the largest contact radius. The preliminary calculation
indicated that this was an adequate size for the problem. In the vicinity of the contact the mesh was made frier
in order to produce accurate results.

3. Results for monotonic loading

3.1. Meyer hardness

The material inputs consist of two sets of stress–strain curves shown in Fig. 2. The two sets correspond to
two different yield stress to modulus ratios (ry0/E). It is worth mentioning that effects of kinematic and iso-
tropic hardening cannot be distinguished in the case of monotonic loading because proportional changes of
stresses and strains occur. Thus, only the loading cycle (without unloading cycle) of the stress–strain curves
are shown.

The theoretical basis of the problem is so far only available for the elastic case due to Hertz (Johnson,
1985). Meanwhile historically, the behavior involving elasto-plasticity has been treated in a more empirical
manner by Tabor (1951) who used Meyer�s definition of hardness (cited simply as hardness in this paper).
By thoroughly analyzing the spherical indentation data, Tabor came up with a well known result
H = CF · ry0. CF is generally known as the constraint factor whose value varies from 2.8 to 3.1 (Tabor,
1951; Ishlinsky, 1944; Richmond et al., 1974; Follansbee and Sinclair, 1984; Lee et al., 1972) if the substrate
was rigid-perfectly plastic and from 1 to 3 if the substrate was elasto-plastic (Tabor, 1951; Tirupataiah and
Sundararajan, 1991, 1987; O�Neill, 1967; Johnson, 1970, 1985). However, his finding is valid only beyond a
certain indentation strain value. This is also what is shown in Fig. 3 which was obtained using inputs given
in Fig. 1. The result was obtained from the FEM simulation by determining, at different load level, the contact
radius of the solid indented by spheres whose radii varied between 300 and 1500 times the typical element size
in the contact region. These radii were chosen so that the contact area was much larger than the typical ele-
ment size. The contact radius was found accurately by examining the location only where the minimum nor-
mal pressure fell below 1% of the maximum value. Thus, the contact radius was not sampled at load levels
where these locations were not well defined. Furthermore, to assure the accuracy large sphere radii were used
for smaller loads, while at larger loads smaller spheres were used.

Tabor�s equation has been argued to be valid only within the fully plastic range of the hardness curve. In
Fig. 3, such an equation is seen only valid for the material without hardening (perfectly plastic) beyond a/R of
about 50. To normalize the effect of hardening, it has been suggested (Tabor, 1951; Tirupataiah and
Sundararajan, 1991, 1987) that the hardness be normalized by the yield stress corresponding to the plastic
strain of 0.2a/R. After performing such a procedure, the result is replotted in Figs. 4 and 5. Now, the normal-
ized hardness relations for different materials appear to be tightly bound and hardly distinguishable from each
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Fig. 2. Stress–strain curves for different hardening parameters.
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other except for the material with c = 22 (in Fig. 2). The curve from this material lies below the group of
curves in Fig. 4. What separates this material is that the value of 0.2a/R used as the plastic strain is to high
for such a material, a value of 0.16a/R will give a better result. A scatter band indicating the deviation of nor-
malized hardness curves from the curve belonging to the perfectly plastic material can be seen in Fig. 6 which
covers a wider range of material properties. From the above analysis we have found that the characterization
of surface response through hardness vs. indentation strain can be sensitive to the choice of the multiplication
factor in front of a/R.

There are basically three deformation regimes in the relation between the normalized hardness (Meyer
hardness normalized by the yield strain obtain at equivalent strain of 0.2a/R) and the normalized indentation
strain (aE/Rryo): elastic, elastic–plastic, and fully plastic (Johnson, 1985). The elastic to elastic–plastic bound-
ary is obtained from Hertz theory (Johnson, 1970, 1985),
po ¼
3

2

P
pa2

¼ 3

2
�p ð15Þ
where P and a are, respectively, the contact load and the contact radius. Yielding is determined using the von
Mises criterion as follows:
�rmax ¼ Max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
½ðrr � pmÞ

2 þ ðrh � pmÞ
2 þ ðrz � pmÞ

2�
r

pm ¼ rr þ rh þ rz

3

ð16Þ
The stress components above refer to the subsurface stresses. They vary along the centerline of the contact
loading as follows:
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rr

po
¼ rh

po
¼ �ð1� mÞ 1� z

a
tan�1 a

z

� �h i
þ 1

2ð1þ z2=a2Þ
rz

po
¼ � 1

1þ z2=a2

ð17Þ
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Thus, the condition at yield can be found,
�rmax ¼ 0:93�p ¼ ryo ð18Þ

Notice that �p is essentially the Meyer hardness (H) defined for the elastic range. At yield, the elastic limit in
terms of H or �p and a/R are
�p ¼ 4

3p
E

1� m2
a
R

� �
¼ 1:08ryo;

a
R
¼ 0:81pð1� m2Þ ryo

E
ð19Þ
Notice that in Figs. 4 and 5, hardness curves are similar to that of the perfectly plastic materials. This suggests
that hardness can be approximated using analytical expressions defined in each deformation range. In the elas-
tic range, Hertz solution is valid, in the elastic–plastic range an analytical expression can be found using the
spherical cavity solution for perfectly plastic materials, and in the fully plastic range a constraint factor (CF)
based on Tabor�s empirical equation can be used. The Hertz solution has been given above and the constraint
factor has been estimated to be 2.9. The spherical cavity solution is readily available for elastic-perfectly plastic
materials, it describes the evolution of the plastic radius with contact radius (Johnson, 1970, 1985; Hill, 1950;
Narasimhan, 2004):
ry

E
3ð1� mÞ

r2p
a2

� 2ð1� 2mÞ a
rp

" #
drp
da

¼ a
2R

ð20Þ
The above equation can be solved analytically assuming drp/da = rp/a, as suggested in Johnson (1985), which
gives
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rp
a
¼ �o=2þ 2ð1� 2mÞ

3ð1� mÞ

� �1=3
; �o ¼

a=R
ryo=E

ð21Þ
To calculate hardness, one first uses the relation between the size of plastic zone and the pressure ðp̂Þ applied
inside a spherical cavity in an infinite medium given by Hill (1950). Then, based on the expression
rzz ¼ p̂ þ 2ry=3 within the spherical cavity suggested by Johnson (1985) hardness is found to be
p̂ ¼ 2ry ln
rp
a

� �
þ 1

3

� �

H ¼ p̂ þ 2

3
ry ¼ 2ry ln

rp
a

� �
þ 2

3

� � ð22Þ
It is worth mentioning that two recent papers by Park and Pharr (2004) and by Mesarovic and Fleck (1999)
have looked also into the relation between and hardness and indentation strain. These two papers however,
used different constitutive laws for the substrate. Yet, they found a quite similar hardness-indentation strain
relation. Mesarovic and Fleck recognized that when the indentation strain exceeded some limit within the fully
plastic zone hardness might not stay constant but decrease. We did not find this since we did not go beyond the
limit described by Mesarovic and Fleck, which is primarily related to the geometric non-linearity. Park and
Pharr who used the power law strain hardening, acknowledged this behavior as well and did not go beyond
the aforementioned limit. They obtained, after normalizing hardness with yield stress at 0.2a/R (just like our
approach), different hardness-indentation strain relations for different materials. In their work, the hardness
relations seem to be spread due to differences in hardening exponent. This also what we found as shown in
Fig. 6, but we also found that the spread was due to the factor 0.2 used in relating the indentation strain with
the equivalent plastic strain, e.g. in H/ry (0.2a/R). If the factor was chosen appropriately, the spread disap-
pears. In our case, the appropriate factor can vary from 0.15 to 0.25.

3.2. Plastic zone

To further see the role of plasticity it is necessary to observe the extent of the plastic deformation below the
surface or the plastic zone. When the deformation is in the fully plastic regime, H/ryo = CF = constant. This
means, according to Eq. (21) above the plastic zone ratio rp/a should also be constant. To obtain such a value
we write
rp
a
¼ exp

CF

2
� 2

3

� �
ð23Þ
The above equation is obtained from the cavity solution which implies the plastic zone shape to be spherical.
The actual shape however, is not spherical and is shown schematically in Fig. 1. To characterize such a shape
one can use the maximum depth or width of the plastic zone, rp or hp. When the maximum depth is used, its
value normalized by the contact radius a (as suggested above) is plotted in Fig. 7 for materials defined by
strain-curves in Fig. 2. For the perfectly plastic material, rp/a appears to be close to the analytical estimate
given above. For instance, for CF = 2.9 a value of 2.2 is obtained for rp/a. However, for different hardening
materials rp/a does not seem to be constant even for large indentation strains belonging to the fully plastic
regime defined according to Figs. 4 and 5.

One apparent reason for such an increasing rp/a is the lack of self-similarity in spherical indentation
behavior. The other contributing factor is piling-up or sinking-in of the material at the free surface. In fact
for hardening materials, simulation results indicate that the horizontal growth of the plastic zone as a function
of a/R is not proportional to the vertical growth even in the so called fully plastic regime.

3.3. Relations between surface and subsurface strains

In the previous subsections, it has been shown that surface responses of different elasto-plastic materials can
be normalized when expressed in terms of normalized hardness H/ry, and indentation strain aE/Rryo. As
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already shown, in the elastic–plastic deformation regime the plastic zone size is not scaled directly with the
contact radius. The latter is supposed to represent the surface loading after being normalized by the indenter
radius, a/R. Such an interpretation suggests that subsurface responses are more sensitive to plastic parameters,
and their normalization or characterization, if possible, are not as easy as the surface response. To show this,
the subsurface equivalent plastic strain will be compared for different materials.

The choice, the equivalent plastic strain, is obvious because it represents the plastic response. The location
to be evaluated is chosen to be the point where yielding according to von Mises criterion first takes place. Our
calculation indicated that the maximum von Mises stress which is also the first point to yield always occurs at
the vertical axis of the indenter at the depth of 0.5a below the surface. The equivalent plastic strain at this
point is simply:
��eq ¼ k ðr ¼ 0; z ¼ 0:5aÞ ð24Þ
The result of plotting ��eqE=ryo versus aE/Rryo is shown in Fig. 8. There seems to be a unique relation between
��eq and aE/Rryo which is independent of plasticity parameters. This also suggests that ��eq scales linearly with
the indentation strain aE/Rryo and thus, ��eq can be a potential candidate to represent the subsurface plastic
response. The scaling factor E/ryo appears to be a key parameter and cannot be simply cancelled out to pre-
serve the relation shown in Fig. 8. The reason for this is because ��eqE=ryo relates to aE/Rryo according to a
linear equation that has an offset when aE/Rryo = 0. Surely, ��eq does not exist below the initial yield point
and ��eqE=ryo � aE=Rryo relation terminates at that point. Taking off E/ryo will produce several linear curves
that have different offset values.
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We have not been able to make the physical interpretation of ��eq clearer since its location changes with a.
Nevertheless, this finding implies that the plastic deformation at the location defined by a fixed ratio relative
to the indentation radius scales uniquely with aE/Rryo. As a comparison, a plot of the variation of equiv-
alent plastic strain at a fixed depth (z = R/30) with indentation strain is given in Fig. 9. A unique relation
shown in Fig. 8 is not observed in this figure. Each relation basically depends on the set of material
properties.

4. Results for non-monotonic loading

4.1. Load–displacements and surface profile

In this analysis, two cases of loading cycle shown in Fig. 10 are considered. They consist of indentation up
to a maximum load and then reloading to zero. The first one (case A) corresponds to regular loading–unload-
ing where the maximum load is kept constant every cycle. Meanwhile in the second one (case B), the maximum
load in each cycle is increased 20% from the previous maximum. The material to be used for the simulation is
described in Appendix A. Therein, a set of material parameters have been determined from the experimental
data by Mizuno et al. (2000) and the effect of the plasticity parameter b has been presented. Evaluations of
indentation strain and hardness were not attempted in this non-monotonic loading condition, primarily be-
cause they can not be easily interpreted when the surface has been repeatedly deformed and residual stresses
exist beneath the surface.
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Load–displacement curves for different combined hardening parameter b, including two extreme hardening
materials, purely kinematic (b = 0) and purely isotropic (b = 1) hardening are plotted in Fig. 11 for the load-
ing case A. The material with b = 0.3 is the simulated 316FR steel explained in Appendix A.

Notice that the load as well as the displacement have been normalized with their corresponding yield limits
according to von Mises criterion (see also (19) above),
P y ¼ ð1:08pÞ3 3ryoð1� m2Þ
4E

� �2
ryoR2

dy ¼
9P 2

yð1� m2Þ2

16RE2

" #1=3
¼ 0:81pryo

ð1� m2Þ
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� �2
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The most apparent influence of b can be seen by comparing the residual displacement cumulated over the cycle
and the load–displacement loop. The accumulation of residual displacement seems to be higher for lower b
implying the strong effect of kinematic hardening on the fatigue deformation. The accumulation appears to
be minimum for larger b and no accumulation is found for the purely isotropic hardening material.

Results similar to above for the other loading case is shown in Fig. 12. Here, as before the kinematic
hardening material exhibits some reverse plastic deformation. This can be seen from the loop formed during
loading–unloading–reloading cycles which is a known artifact of Bauschinger effect. The two curves are also
seen to strongly deviate from each other as the load increases.

The residual surface profile at the end of load cycles is shown in Fig. 13. Both profiles seem to show the pile-
up behavior where the shoulder can be used to indicate the contact boundary. At some distance beyond the
shoulder or the contact boundary both profiles appear to be very close to each other. Furthermore, the contact
sizes of both judged from the shoulders are not so different. However, the profiles differ significantly inside the
deformed contact region. The difference is most notable in the center displacement (x-coordinate is zero) as
shown in Fig. 13, which can also be estimated from the difference in the residual depth of both curves in
Fig. 12.

4.2. Stress, strain and residual plastic zone

Such a strong influence of b and the effect of load cycle can be observed in terms of Mises stress and equiv-
alent plastic strain. In this study, the most significant plastic strain development has been observed at some
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distance below the indentation center. The equivalent plastic strain development sampled at a distance of
about R/75 under the indentation center is given Figs. 14 and 15. In both load cases, the materials dominated
by kinematic hardening exhibit stronger plastic strain development. However, when the load case A is consid-
ered no equivalent plastic strain develops after the first loading cycle in the isotropic hardening material. This
is also true for other locations in the substrate and explains why the indentation depth does not develop
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Fig. 18. Contours of residual equivalent plastic strain for b = 0.3 (top) and b = 1 (bottom) in case B.
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further after the first cycle. The different trend between the kinematic and isotropic hardening can be attrib-
uted to the fact that the yield stress during cyclic loading changes significantly in the kinematic hardening but
not in the isotropic hardening. Furthermore, at the location sampled, the plastic strain does not seem to be
reversed. At some other locations however, the plastic strain does reverse during unloading of materials with
lower b. This is true since we found that contours of equivalent plastic strain at the maximum load, was
slightly different compared to that at zero load (residual).

Variations of Mises stress with time, sampled from the element directly under the indenter tip is shown in
Fig. 16 for case A and Fig. 17 for case B. Both cases suggest that there is a significant stress relaxation in mate-
rials with low b or the materials exhibiting strong kinematic hardening behavior. Notice that in the first cycle
the stress variations in different materials are almost the same. After the first cycle, the reduction of Mises
stress in kinematic hardening materials together with the occurrence of cumulative residual displacement
(in Figs. 11 and 12) also suggest that reverse plasticity may take place. This means that in materials dominated
by kinematic hardening yielding can also occur during unloading, just as we have stated for the case of plastic
strain variation at the end of the previous paragraph. This indicates that the typical one-cycle indentation test
may not be sufficient to characterize the effect of plastic behavior.
Fig. 19. Contours of residual Mises stress for b = 0.3 (top) and b = 1 (bottom) in case B.
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The equivalent plastic strain contours are shown in Fig. 18 only for the load case B. These contours, as well
as the other contours latter, depict the condition at the end of the loading cycle (residual state) and are shown
axisymmetrically with loading directed in the vertical direction. Furthermore, the top contour corresponds to
the simulated 316FR steel and the bottom one to the purely isotropic (b = 1) hardening. As seen from the leg-
ends, both contours exhibit similar magnitudes of maximum plastic strains. However, the simulated 316FR
steel (top) gives a wider area of maximum plastic strain (grey color) compared to the isotropic hardening mate-
rial (bottom). Meanwhile, the size of the plastic zone for a minimum plastic strain of around 0.0002 are pretty
much the same for both materials. Notice, that the maximum and minimum limits of the scale used for both
contours have been set the same. The contours of Mises stress are given in Fig. 19, where the stress distribu-
tions appear to be quite different in the two materials. The maximum Mises stress is also found to be higher in
the isotropic hardening material but not directly below the center of indenter, where Mises stress from Fig. 17
is seen higher in the simulated 316FR steel. Somewhere below the indentation center both materials seem to
experience negligible von Mises stress indicated by the white regions. Around these regions von Mises stress is
still comparable to the material yield stress (0.15 GPa). It is possible that therein the stress state is close to
purely hydrostatic with very small deviatoric stresses. It must be understood that the contours correspond
to the unloaded state where the above behavior may occur due to the residual plastic behavior.

5. Conclusions

The results from monotonic loading reveal that stress–strain curves of materials can, up to a certain degree,
be described by hardness-indentation strain relations or vice versa. This is true because the normalization of
hardness by yield stress at a certain characteristic indentation strain (v · a/R) seems to bring different hardness
curves into almost a single curve. However, due to different hardening rate, yield stress, and v these different
hardness curves, after being normalized, do not merge into a single curve corresponding to the hardness curve
of perfectly plastic materials. Instead, the normalized hardness curves form a scatter band. To minimize such a
scatter appropriate value of v must be chosen for different materials. Notably, for most materials investigated
v = 0.2 is appropriate but for high hardening materials (high c) v varies between 0.15 and 0.25.

It is worth mentioning that difficulties in measuring the contact radius may also hinder us from obtaining
accurate hardness-indentation strain relations. When such relations can be accurately obtained however, nor-
malization of them by suitably chosen indentation strains can produce a relatively uniform hardness curve
general enough for different plasticity parameters. The normalized curves, being similar to the hardness curve
of perfectly plastic materials, can be fitted analytically using the Hertz solution and the spherical cavity solu-
tion. The latter should be considered as an approximation since it does not intersect the Hertz solution at the
initial yield point but slightly higher. This deviation can be considered minor as seen from how well the cavity
solution matches the numerical result in Fig. 5. Furthermore, assuming a hardening material follows such an
analytical form and its hardness curve in the form of Fig. 3 is available, one can backcalculate the yield stress
corresponding to yield strain of 0.2a/R or constant · 0.2a/R.

In general, the plastic zone size and its shape in the fully plastic region appear to be dependent on the plas-
ticity parameters. In this region, the spread of plastic zone occurs more towards the free surface, making the
plastic zone�s depth to contact radius ratio vary. This is not the case for the material without hardening, where
the plastic zone�s depth to contact radius ratio stays relatively constant.

In order to be able to compare isotropic and pure kinematic hardening behavior, it is necessary to consider
cyclic loading. The difference between the two hardening laws cannot be easily distinguished from the cyclic
indentation load–displacement curves and is difficult to see in terms of deformed surface profile. In general,
materials with the kinematic or combined hardening laws exhibit some form of reversible plastic deformation
which can be identified from the loop formed during the load–unload–reload cycle.

Differences in terms of residual equivalent plastic strain, Mises stress, and their variations with displace-
ment/load cycles are quite obvious. This and the above findings suggest that we have to look carefully for what
happens below the surface (subsurface response) in studying the role of plasticity on indented materials. The
surface response alone is not sufficient to describe or to imply the critical conditions of subsurface deforma-
tion. In addition, applications involving cyclic mechanical contact requires good knowledge of the materials in
contact. A kinematic or combined hardening law is more appropriate for materials exhibiting Bauschinger
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effect. As suggested by presented results, its use can lead to a tremendous increase of subsurface�s equivalent
plastic strain while von Mises stress is lowered considerably.

Appendix A. Plasticity parameters

The parameters used for simulating the cyclic indentation are similar to the set given here. The parametric
study is done by fixing the aforementioned set and varying the parameter b.

The present plasticity model is also capable of modeling the cyclic stress–strain response of a real material.
As an example, the cyclic tension test data of 316FR steel at room temperature given in (Mizuno et al., 2000)
has been simulated. For the strain history shown in Fig. A.1 the experimental stress–strain response looks like
that in Fig. A.2(a) and the prediction is shown in Fig. A.2(b). It must be understood that this study does not
try to find the algorithm to backcalculate the model parameters so the fitting to the experimental data was a
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Fig. A.1. Strain history used to generate the experimental data in Mizuno et al. (2000).

Fig. A.2. Experimental data in Mizuno et al. (2000) (a) and the model prediction (b).
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trial and error process rather than using inverse or optimization algorithms. Yet, comparing Figs. A.2a and b
the prediction appears to be reasonably good. The model parameters used for the prediction are the following:
E = 196 GPa, m = 0.3, b = 0.3, ro = 0.15 GPa, Q = 0.2 GPa, c = 90, l(1) = 12 GPa, n(1) = 220, l(2) = 26 GPa,
n(2) = 540, l(3) = 7 GPa, n(3) = 110. One can certainly improve this by adding more parameters and applying
some optimization algorithms to find the model parameters that give the best fit to the data.

One of the important parameters in the present model is the mixed hardening parameter b. The purely kine-
matic hardening behavior is achieved using b = 0 while the purely isotropic one is obtained using b = 1. Using
the same material parameters presented before, the effect of varying b on the stress–strain cycle can be seen in
Fig. A.3. It clear from the figure that b changes the hardening rate as well as the saturation yield stress. For
purely isotropic hardening, the latter is Q in Eq. (12). Meanwhile purely kinematic hardening, it is a function
of l(i) and n(i).

We would like to note here that the present model coincides with the Chaboche model in ABAQUS when
l(i) and n(i) are limited to the first term. The mixed hardening parameter (b) can also be incorporated into the
parameters in Chaboche model. In fact, the present model has been verified by Chaboche model and the re-
sults of both models appeared to be similar. When one uses Chaboche model for the monotonic loading, the
stress–strain curve increases proportionally and Kock�s model for isotropic hardening and Armstrong–
Frederick kinematic hardening model will coincide with each other.

Appendix B. Numerical implementation

The integration of the above constitutive law was carried out using the backward Euler method with the
closest point projection algorithm. For the small deformation problem it follows closely the scheme detailed
by Kobayashi and Ohno (2002). In ABAQUS, we extend the method to handle the large deformation problem
using the Hughes–Winget incrementally objective integration scheme and approximate the Kirchoff stress ten-
sor as the Cauchy stress tensor (s � r). The latter is a valid approximation as long as the volumetric deforma-
tion involved is small. Such a case certainly holds for elastic–plastic deformation behavior of most metals,
which are the focus of this study, where the elastic strains are small compared to their plastic counterpart
and the volumetric plastic strain is negligible. Detailed discussions on the implementation of the Hughes–
Winget integration scheme can be found in (Fish and Shek, 1999) and references quoted therein.

For the time increment n to n + 1, the symmetric part of the velocity gradient is
D ¼ sym
ov

ox

� �
ðB:1Þ

Dnþ1 ¼ De
nþ1 þDp

nþ1 ðB:2Þ

In the beginning of each increment, the elastic and plastic strain components are rotated according to:
Ee
nþ1 ¼ DRT � Ee

n � DRþDe
nþ1Dt ¼ DRT � Ee

n � DRþ DEe
nþ1

Ep
nþ1 ¼ DRT � Ep

n � DRþDp
nþ1Dt ¼ DRT � Ep

n � DRþ DEp
nþ1

ðB:3Þ
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with the increment of rotation given by:
DR ¼ I � 1

2
DW

� �ð�1Þ

� I þ 1

2
DW

� �

DW ¼ asym
oDu

oxnþ1=2

� � ðB:4Þ
Furthermore, the following approximation is also made to Eq. (5):
rnþ1 � DRT � rn � DRþ Drnþ1

¼ DRT � rn � DRþ C e � ðDEnþ1 � DEp
nþ1Þ ðB:5Þ

DEp
nþ1 ¼ Dknþ1rnþ1 ðB:6Þ

rnþ1 ¼
3½snþ1 � ð1� bÞanþ1�

2�rnþ1

ðB:7Þ
In the above equation, s is the deviatoric part of r and Dk is the magnitude of the plastic strain increment. All
other parameters and variables are as explained in the text. The evolution of the back stress tensor follows the
same integration scheme as the stress tensor,
anþ1 ¼
XM
i¼1

a
ðiÞ
nþ1 ðB:8Þ

a
ðiÞ
nþ1 ¼ DRT � aðiÞn � DRþ ðlðiÞrnþ1 � nðiÞaðiÞnþ1ÞDknþ1 ðB:9Þ
Collecting the terms containing the current value of the back stress tensor gives
a
ðiÞ
nþ1 ¼

DRT � aðiÞn � DRþ lðiÞDknþ1rnþ1

1þ nðiÞDknþ1

ðB:10Þ
Next, we implement the closest point projection or the radial mapping algorithm. The initial guess for the
stress tensor as the elastic predictor is
r�
nþ1 ¼ DRT � rn � DRþ C e � DEnþ1 ðB:11Þ
The yield condition is checked using
f �
nþ1 ¼

3

2
½s�nþ1 � ð1� bÞanþ1� : ½s�nþ1 � ð1� bÞanþ1� � rynþ1

ðB:12Þ
When f �
nþ1 < 0 then r�

nþ1 is taken as the correct guess giving rn+1. If f �
nþ1 P 0; rnþ1 is corrected using the plastic

corrector
rnþ1 ¼ r�
nþ1 � C e � DEp

nþ1 ¼ r�
nþ1 � Dknþ1C

e � rnþ1 ðB:13Þ
For isotropic elastic materials with incompressible plasticity, the above equation leads to
snþ1 � ð1� bÞanþ1 ¼ s�nþ1 � 2GDknþ1rnþ1 � ð1� bÞ
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i¼1
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Thus, when Dkn+1 has been found, (B.14) updates the deviatoric stress from its initial guess. By applying the
yield condition, a non-linear scalar equation of the following is obtained
Dknþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðs�nþ1 � �anÞ : ðs�nþ1 � �anÞ

q
� rynþ1

3
2
ð1� bÞBnþ1 þ 3G

�an ¼ ð1� bÞ
XM
i¼1

DRT � aðiÞn � DR
1þ nðiÞDknþ1

Bnþ1 ¼
XM
i¼1

lðiÞ

1þ nðiÞDknþ1

ðB:15Þ
The above equation is a non-linear scalar equation to be solved by an iteration procedure. Kobayashi and
Ohno (2002) and Ohno and Abdel-Karim (2000) suggested a successive substitution scheme. We have solved
this using both the successive substitution and Newton methods. For the uniaxial tension of an eight-node 3-D
element used to produce Fig. A.1, the solution by the Newton method was as a accurate as that obtained using
the successive substitution scheme, but it needed a little less iteration. In the implementation of the Newton
method, the necessary first order derivative of the residual was found analytically for all terms except for
the term containing s* which was found numerically. For the calculation given previously, the number of
iterations (k) averaged over all integration points in an element was less than six for the tolerance of
j ðDkkþ1

nþ1 � Dkknþ1Þ=ro j6 10�6. The elasto-plastic tangent moduli has been obtained using a general form
derived by Kobayashi and Ohno (2002), which can be written as
dDrnþ1

dDDnþ1

¼ C e � 4G2M�1
nþ1 � Idev ðB:16Þ
where Ce is the elastic moduli, Idev = I�(I�I)/3, and Mn+1 is defined as
Mnþ1 ¼ 2GI þ ð1� bÞHnþ1 þ
dry
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ðB:17Þ
where �� ¼
R t
0
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dDDp
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We report here that the result obtained using the above implementation can be checked with that obtained
using the large-deformation plasticity option in ABAQUS. In particular, for the monotonic loading using a
tabulated values of true plastic stress–strain relation and for the cyclic loading using the combined hardening
option (Chaboche model) the results of the present implementation and built-in ABAQUS models are similar.
In the case of the cyclic loading using the combined hardening option in ABAQUS (Chaboche model), the
same result as that of the present model can be obtained if l(i) and n(i) are limited to one term. It is also true
for any value of b because it can be embedded in the combined hardening parameters of ABAQUS. Such a
finding basically confirms the accuracy of the integration algorithm.
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